#
MTH3020

Complex analysis and integral transforms

MTH3020 is rated by StudentVIP members:

### Textbooks

#### We don't have any textbooks for this subject yet.

##### Why don't you be the first?

Sell your textbook for MTH3020### Notes

View all MTH3020 notes#### We don't have any notes for this subject yet.

##### Why don't you list yours first?

Sell your notes for MTH3020### Tutors

Become a tutor for MTH3020#### Thomas

##### $30 per hour

Currently finishing my honours year in theoretical physics (undertaking a project in theoretical x-r...

#### Rahil

##### $50 per hour

I am currently doing a PhD in Physics/Applied Mathematics at Monash University and I completed Bache...

#### Anthony

##### $60 per hour

I am studying Bachelor of Science Advanced Research-Honours. I tutor mainly at uni and through Skype...

### Reviews

A rewarding and challenging unit, and was especially interesting for an Electrical Engineering student. The topics start off slow, giving an opportunity to revise basic Complex Numbers techniques. At around week 5 things begin to heat up, with many proofs in class to digest (however, you may only see a couple of these in formal assessments -- likely Liouville's Theorem and Cauchy's Theorem). The final week of this section is very abstract, and the exam only rewards a few marks regarding these topics. The second half of the unit is where the real challenge is, having to use the fundamental Complex Analysis techniques from the first half to do integral transforms. Though important for the assignments, the Complex Inversion Formula was not on the exam. Neither was solving a PDE using Laplace Transforms, just with the three kinds of Fourier Transforms from class.

## Anonymous, Semester 2, 2017

Starts with the basics of complex numbers and moves into complex calculus and ends with Laplace transforms. ~$35 Schaum's Outlines: Laplace Transforms: Murray R. Spiegel is allowed to be taken into the exam (big help)